Закон Всемирного Тяготения Реферат

Закон Всемирного Тяготения Реферат

Закон Всемирного Тяготения Реферат 3,7/5 9405reviews

Экспериментальная оценка степени точности закона тяготения Ньютона . Результаты ньютоновских расчетов теперь называют законом всемирного тяготения Ньютона. Согласно этому закону между любой парой тел во .

Всемирное тяготение — Phys. Book. Введение. Почему выпущенный из рук камень падает на Землю? Потому что его притягивает Земля, скажет каждый из вас. В самом деле, камень падает на Землю с ускорением свободного падения. Следовательно, на камень со сто- роны Земли действует сила, направленная к Земле.

Согласно третьему закону Ньютона и камень действует на Землю с такой же по модулю силой, направленной к камню. Иными словами, между Землей и камнем действуют силы взаимного притяжения. Это сила тяготения, действующая между любыми телами Вселенной. Вот ход его рассуждений, приведенных в главном труде Ньютона «Математические начала натуральной философии». Брошенный горизонтально камень отклонится под действием тяжести от прямолинейного пути и, описав кривую траекторию, упадет наконец на Землю.

Закон Всемирного Тяготения РефератЗакон Всемирного Тяготения Реферат

Если его бросить с большей скоростью, то он упадет дальше» (рис. Продолжая эти рассуждения, Ньютон приходит к выводу, что если бы не сопротивление воздуха, то траектория камня, брошенного с высокой горы с определенной скоростью, могла бы стать такой, что он вообще никогда не достиг бы поверхности Земли, а двигался вокруг нее «подобно тому, как планеты описывают в небесном пространстве свои орбиты». Причиной такого «падения» (идет ли речь действительно о падении обычного камня на Землю или о движении планет по их орбитам) является сила всемирного тяготения. От чего же эта сила зависит? Но ускорение по второму закону Ньютона обратно пропорционально массе\.

Как же объяснить, что ускорение, сообщаемое телу силой притяжения Земли, одинаково для всех тел? Это возможно лишь в том случае, если сила притяжения к Земле прямо пропорциональна массе тела. В этом случае увеличение массы т, например, вдвое приведет к увеличению модуля силы F тоже вдвое, а ускорение, которое равно \(a = \frac . Обобщая этот вывод для сил тяготения между любыми телами, заключаем, что сила всемирного тяготения прямо пропорциональна массе тела, на которое эта сила действует.

На каждое из них, согласно третьему закону Ньютона, действуют одинаковые по модулю силы тяготения. Поэтому каждая из этих сил должна быть пропорциональна как массе одного тела, так и массе другого тела. Поэтому сила всемирного тяготения между двумя телами прямо пропорциональна произведению их масс.

Многие механические явления и процессы определяются действием сил тяготения. Закон всемирного тяготения был открыт Исааком Ньютоном в 1682 . Закон всемирного тяготения реферат 2010 по физике скачать бесплатно тела солнечной Земля планеты спутники Луна Солнце Расстояние Масса . Читать доклад online по теме 'Закон всемирного тяготения'. Раздел: Математика, Математика, Загружено: 12.01.2009 16:02:09.

F \sim m. Это как будто бы означает, что и сила от расстояния не зависит. Но Ньютон считал, что отсчитывать расстояния надо не от поверхности, а от центра Земли. Но радиус Земли 6. Понятно, что несколько десятков, сотен или даже тысяч метров над поверхностью Земли не могут заметно изменить значение ускорения свободного падения.

Однако наблюдать и изучать свободное падение тела с высоты в тысячи километров над Землей трудно. Но сама природа пришла здесь на помощь и дала возможность определить ускорение тела, движущегося по окружности вокруг Земли и обладающего поэтому центростремительным ускорением, вызванным, разумеется, той же силой притяжения к Земле. Таким телом является естественный спутник Земли – Луна. Если бы сила притяжения между Землей и Луной не зависела от расстояния между ними, то центростремительное ускорение Луны было бы таким же, как ускорение тела, свободно падающего близ поверхности Земли. В действительности же центростремительное ускорение Луны равно 0,0. Обращение Луны вокруг Земли происходит под действием силы тяготения между ними.

Приближенно орбиту Луны можно считать окружностью. Следовательно, Земля сообщает Луне центростремительное ускорение. Оно вычисляется по формуле \(a = \frac . Учитывая, что радиус Земли Rз . Ньютон окончательно сформулировал закон всемирного тяготения. F = G \cdot \frac .

Иначе говоря, он справедлив только для материальных точек. При этом силы гравитационного взаимодействия направлены вдоль линии, соединяющей эти точки (рис. Подобного рода силы называются центральными. Для нахождения силы тяготения, действующей на данное тело со сто- роны другого, в случае, когда размерами тел пренебречь нельзя, поступают следующим образом. Оба тела мысленно разделяют на столь малые элементы, чтобы каждый из них можно было считать точечным.

Складывая силы тяготения, действующие на каждый элемент данного тела со стороны всех элементов другого тела, получают силу, действующую на этот элемент (рис. Проделав такую операцию для каждого элемента данного тела и сложив полученные силы, находят полную силу тяготения, действующую на это тело. Задача эта сложная.

Есть, однако, один практически важный случай, когда формула (1) применима к протяженным телам. Можно доказать, что сферические тела, плотность которых зависит только от расстояний до их центров, при расстояниях между ними, больших суммы их радиусов, притягиваются с силами, модули которых определяются формулой (1). В этом случае R – это расстояние между центрами шаров. Тогда под R в формуле (1) следует понимать расстояние от данного тела до центра Земли. Таким образом (физический смысл). Для этого надо измерить модуль силы тяготения F, действующей на тело массой m.

R между телами. Оценить, правда весьма грубо, значение G в то время удалось в результате рассмотрения притяжения маятника к горе, масса которой была определена геологическими методами. Кавендишем с помощью прибора, называемого крутильными весами. Схематично крутильные весы показаны на рисунке 4. Кавендиш закрепил два маленьких свинцовых шара (диаметром 5 см и массой m. Стержень был подвешен на тонкой проволоке.

Для этой проволоки предварительно определялись силы упругости, возникающие в ней при закручивании на различные углы. Два больших свинцовых шара (диаметром 2. Силы притяжения со стороны больших шаров заставляли маленькие шары перемещаться к ним, при этом натянутая проволока немного закручивалась. Звуковые Схемы Simpsons Для Windows 7.

Степень закручивания была мерой силы, действующей между шарами. Угол закручивания проволоки (или поворота стержня с малыми шарами) оказался столь малым, что его пришлось измерять с помощью оптической трубы. Результат, полученный Кавендишем, только на 1% отличается от значения гравитационной постоянной, принятого сегодня. G . Это очень малая сила. Только в том случае, когда взаимодействуют тела огромной массы (или по крайней мере масса одного из тел велика), сила тяготения становится большой.

Например, Земля притягивает Луну с силой F . Это связано с тем, что гравитационная постоянная мала. Но при больших массах космических тел силы всемирного тяготения становятся очень большими.

Эти силы удерживают все планеты возле Солнца. С помощью этого закона с огромной точностью определяются положения небесных тел на небесном своде на многие десятки лет вперед и вычисляются их траектории. Закон всемирного тяготения применяется также в расчетах движения искусственных спутников Земли и межпланетных автоматических аппаратов. Планеты не движутся строго по законам Кеплера.

Законы Кеплера точно соблюдались бы для движения данной планеты лишь в том случае, когда вокруг Солнца обращалась бы одна эта планета. Но в Солнечной системе планет много, все они притягиваются как Солнцем, так и друг другом. Поэтому возникают возмущения движения планет. В Солнечной системе возмущения невелики, потому что притяжение планеты Солнцем гораздо сильнее притяжения другими планетами. При вычислении видимого положения планет приходится учитывать возмущения. При запуске искусственных небесных тел и при расчете их траекторий пользуются приближенной теорией движения небесных тел – теорией возмущений.

Одним из ярких примеров триумфа закона все- мирного тяготения является открытие планеты Нептун. Была вычислена ее орбита и составлена таблица положений этой планеты на много лет вперед. Однако проверка этой таблицы, проведенная в 1.

Закон Всемирного Тяготения Реферат
© 2017